THE FUTURE IS UNDER CONSTRUCTION

The future isn’t something that will suddenly spring upon us ready-made. Whether you grew up on The Jetsons, Star Trek, Futurama, or just got a kick out of the predictions in magazines like Popular Mechanics and Popular Science (flying cars are always just a few years away) you probably wondered what it would be like to fall asleep for decades like Rip Van Winkle and suddenly arrive in that future world. Of course, that’s not the way it happens. The future comes with every passing moment. You’ve already witnessed incredible changes in technology in your lifetime, many of which no one predicted. Yes, a leap ahead ten years would bring a whole range of new gadgets and processes, but the point is, those “next big things” are in development now.

That struck me forcefully this week when I discovered the online magazine New Atlas. Article after article featured new discoveries, pending inventions, and cool gadgets—the future in process. It’s not only fun to read about the incredible ingenuity of human beings, but also to let your imagination run free about what these new creations could bring.

Some of them are potential game changers on a large scale. Like the research at Australia National University on the light-changing properties of certain nanocrystals (a nanometer is a billionth of a meter, and nanotechnology is one of the most promising areas of research around). The reason humans don’t see well at night isn’t that there isn’t any light around, it’s just light at frequencies the human eye can’t detect. Night vision goggles mostly collect infrared light and other frequencies and amplify it. But nanocrystals can be produced that shift the frequency of incoming light, say, from infrared into something in the visual spectrum. So imagine an ultrathin coating on regular eyeglasses or even contact lenses that can make these night-time forms of light visible for us. Suddenly there’s no more need for glaring, energy-sucking streetlamps that turn cities into gargantuan floodlights and banish the night sky. Usage of every kind of artificial light could be reduced. Not to mention the aesthetic and artistic possibilities of seeing our surroundings in whole new ways.

Sticking with crystals for a moment, some other Australian researchers at the University of New South Wales are working to refine a form of solar power crystals called perovskite. Perovskite was discovered about seven years ago, and along with its ability to convert sunlight into energy, it can be made with different chemical compositions to produce distinct properties. Among other things, it can be manufactured in various colours or completely transparent, and can be sprayed on in layers. So you could paint your car, or almost any other object, and the whole thing would become one big solar panel. Issues of durability and efficiency are being worked out, but someday perhaps every structure of an entire city could be put to use providing free and abundant energy. A bright future indeed.

One of the big problems humanity has to deal with is all of the waste products we produce, everything from nuclear waste to raw sewage. On the nuclear front, scientists at the University of Bristol, in England, have developed a way to make good use of the carbon from graphite blocks that have been used for decades to control nuclear reactions in UK generating plants. The graphite ends up mildly radioactive, but rather than find ways to dispose of it these scientists put it under pressure and heat and turn it into man-made diamonds. The diamonds aren’t for decoration—the radioactivity in them reacts with the diamond structure to produce an electric current, and suddenly you’ve got a diamond that’s a battery. A non-radioactive diamond coating makes the battery safe to handle, and it’s thought that these diamonds could still be producing half of their original energy output nearly six thousand years from now! Put that in your pipe and smoke it, Energizer bunny!

But pressure and heat can help transform another waste product, too. It was high pressure and heat that, over eons of time, turned sludgy sea bottoms into crude oil. In a copycat process, a team from the US Department of Energy's Pacific Northwest National Laboratory has learned how to turn raw sewage into biocrude: an oil-like sludge that can be processed the same way as other forms of petroleum from the ground, including into gasoline and other fuels. Considering that U.S cities are calculated to produce 128 billion litres of raw sewage every day, a process like this could be a tremendous boon to both the production of energy and the reduction of pollution.

Obviously, all of these discoveries are still in the refinement stage and will need to be scaled up considerably before they make a major mark on our world, but they are the future, right before our eyes. And, even more importantly, a hopeful future.

I’ll take a look at more of these new developments in a future post.