GOING UP...IN A SPACE ELEVATOR

Photo from thothx.com

A Canadian company has just received a US patent for a new invention. It made headlines because it’s big news. Big, as in, twenty kilometres tall. Thoth Technology of Pembroke, Ontario has designs to build a free-standing tower to the sky, not to touch the face of God, but to house a space elevator.

The reason for a space elevator is to remove the need for expensive and wasteful rockets to reach Earth orbit and, from there, the rest of outer space. The usual concept, as promoted by science fiction master Arthur C. Clarke and others, is to have a large terminus in a geo-stationary orbit (travelling at the same speed as the spin of the Earth so it remains over the same spot on the planet’s surface). From the terminus a cable would be lowered until it reached the ground (like Jack’s beanstalk in reverse). Then cargo and passengers would travel up and down the cable by magnetic or other means. That’s the plan put forward by the Japanese Obayashi Corporation in an announcement last year. They hope to build such an elevator by 2050. The biggest challenge to overcome is the cable, especially since their plans include extending the cable beyond geosynchronous orbit to a counterweight about a quarter of the way to the Moon. You probably can’t imagine the weight of a cable 96,000 kms long. I can’t either. In nanofibres made of Carbon 60 they might have a material with the strength to handle the load at a manageable weight, but so far such fibres have only been made in lengths of a few centimetres. Technology has some catching up to do.

The Thoth Technology plan is very different. Their scheme would involve building a twenty-kilometer-tall tower out of giant inflatable modules stacked on top of one another. Computers would control the inflation of individual gas cells within the modules to keep the whole thing balanced. In the face of a wind, for example, they would presumably increase the inflation on the leeward side and lean the tower into the wind. On top of the tower would be a runway from which space planes could take off and land. This would remove the need for the initial vertical portion of most rocket flights which uses up a third of their fuel.

That’s the advantage. The disadvantages?

Well, remember the last time you went to the airport to catch a flight? Now imagine all that plus a twenty kilometre elevator ride, after which you still wouldn’t be in space —you’d still have to catch a plane. Your luggage would just have twenty extra kilometres in which to get lost.

I imagine they’d be required to build it at least twenty kilometres from any inhabited area, just in case it ever did fall over. Not to mention fools dropping quarters from the observation deck.

And I keep trying to picture a pilot attempting a take-off from something like a gigantic version of one of those bouncing inflatable amusement rides for kiddies.

Personally, I think the original space elevator concept is more workable, in spite of the engineering challenges. But I’ve been wrong before. In any case, Thoth Technologies estimates it could cost five to ten billion US dollars to build their tower. That may be a little rich for Kickstarter. Possibly for Richard Branson, and even Elon Musk, too. On the other hand, if the current Canadian government loses the upcoming election, their successors would probably cancel plans to spend $29 billion on F35 fighter jets. Just sayin’.

They might even be able to subsidize some of the tower’s cost by incorporating a department store:

“Going up! Next floor: space toys, mining equipment, and women’s lingerie…” (A little flash of Sandra Bullock in Gravity there.)

THE SCIENCE FICTION TAKE

Writers get our ideas in different ways. We may not even know where an idea came from. But for science fiction writers it’s fun to take a look at the newest science stories and try a “science fiction take” on the story—imagine what kind of fictional tale could make use of the new facts. Here are a few examples:

The news story: The New Horizon spacecraft’s flyby of Pluto was the biggest space story of the past month. Although it will still take a long time for NASA to receive all of the data, we’ve learned that the surface of Pluto includes glaciers of nitrogen ice, as well as frozen methane and carbon monoxide. The mission has reawakened interest in the dwarf planet and how it came to be part of our solar system, with its wonky orbit so far from the sun (most of the time).

The science fiction take: Two centuries from now, human crews are mining nitrogen and methane on Pluto when it’s discovered that another body the size of a dwarf planet is swooping out of the far reaches of the Oort Cloud on a collision course for Pluto. Engineers try desperately to come up with a plan to deflect the newcomer, and colonists are just about to evacuate Pluto when the incoming planetoid slows down and it’s found to be home to an ancient race of explorers who use rogue planets to travel the galaxy.

The news story: Out of the nearly 2,000 planets that have now been discovered orbiting other stars, it seems as if every other week a new candidate is being named “most earth-like”. Generally that means that it’s a rocky planet (as opposed to a gas giant) orbiting a star not too different from our own sun in the “habitable zone” (not too hot, not too cold because it must have liquid water) and is somewhat close to the Earth in size. The most recent most earth-like is known as Kepler-452b, but here’s a good look at some of the best candidates by Scientific American.

The science fiction take: Fleeing an exhausted home planet, human colonists travel to colonize new planets called New Earth, Earth 2, and Terra Nova around other stars. But because of the impediments of slow space travel and a lack of resources among struggling new colonies, the planets lose touch with each other. On one of them, a catastrophe knocks the civilization down a few rungs and space technology (and knowledge) are lost. When progress once again permits the inhabitants to venture into space, they try to find planets like their own. The most promising candidate found is (drum roll please) the original Earth, refreshed and once again able to host its human children. (Awwww.)

The news story: In recent years, China and Russia have put a lot of effort into developing anti-satellite weapons, and have had no interest in negotiating the peaceful use of space, so the Obama administration in the US has budgeted $5 billion over the next five years to enhance the American military space program. “Space wars” could become a reality.

The science fiction take: An orbital war sparks and the major powers destroy each other’s satellites thereby killing all GPS systems and causing most telecommunications and the internet to collapse. The resulting financial fallout causes a full-blown global economic collapse too. The warmongers still have their conventional and nuclear weapons, but only those that can be guided without satellites. Devastated populations worldwide know who’s to blame, rise up against the makers of war, and forge new alliances, heralding an unprecedented era of peace (but poor availability of TV channels).

Call these ideas cheesy or dumb or maybe brilliant, I have no plans to write any of them into stories (at present). Some of them have probably already been done. The point is, it’s a good exercise for the imagination and it’s fun.

Try it yourself. There might be a science fiction writer lurking inside you. (And for heaven’s sake let him out, because it’s dark in there.)